

More cheese from less milk: eco-innovative real-time milk classification technology for optimized milk use and for reduction of the environmental impact of dairy production.

EXECUTIVE AGENCY FOR SMALL & MEDIUM-SIZED ENTERPRISES

AGREEMENT number - EC0/13/630450

SI2.681276

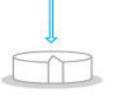
MilkyWay

More cheese from less milk: eco-innovative real-time milk classification technology for optimized milk use

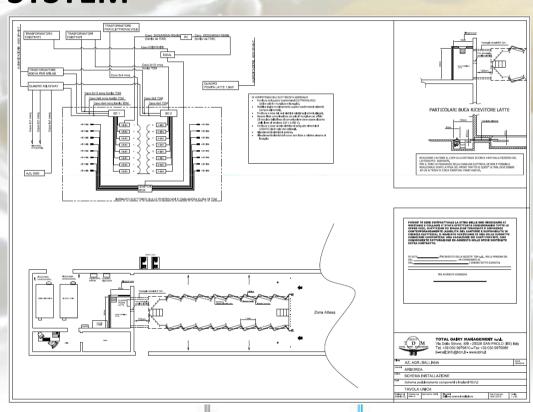
relating to the implementation of an action in the framework of CIP Eco-Innovation First Application and market replication projects

Decision No 1639/2006/EC of the European Parliament and of the Council of 24 October 2006 establishing a Competitiveness and Innovation Framework Programme (2007-2013). (OJ L 310 of 9 November 2006, p. 15)

- Strategic collaboration between 7 partners (the entire milk supply chain).
- Improving milk quality for dairy production and yields.
- New solution for obtaining the same amount of quality cheese with a reduced quantity of milk processed.
- Environmental benefits such as:
 - water savings (-11,2%)
 - less GHG emissions (-9,33%)
 - less methane emissions (-8,4%),
 - less manure to be disposed/recycled (-12,7%)
 - decreased use of energy (- 11,8%)


HOW THE PROJECT

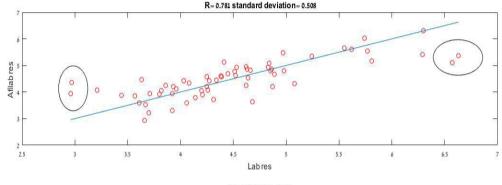
WAS DEVELOPED

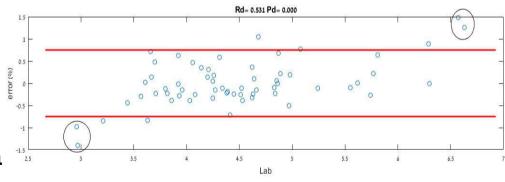


ENGINEERING OF THE SYSTEM

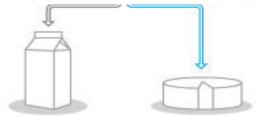
- Costumized project for installation
- Installation of the MCS components
- New milk line, receiver and tank
- New components for washing cycle

CONSTRUCTION, INSTALLATION & VALIDATION





ONLINE CLASSIFICATION SERVICES

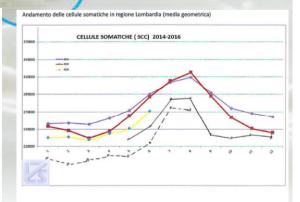

- Monitoring the plant
- Calibrating the system
- Compare and synchronize data
- Check the washing
- Enhance the accuracy
- Channeling optimization
- Quantity flexibility report

FEEDING OPTIMIZATION

- Feeds evaluation
- · Chemical analysis
- Protein fraction characterization
- Formulation/optimization of concentrate
- Guidelines for forage
- Guidelines for ration

Table 4 - Effects of replacing the tabulated values with analytical values in feeds used in diet formulation for the considered feeding scenarios

	Scen	ario 1	Scen	ario 2	Scen	ario 3
	Table	Lab	Table	Lab	Table	Lab
	values	analysis	values	analysis	values	analysis
Protein						
CP	17.2	16.2	16.1	14.7	16.1	14.6
RDP, % DM	10.4	10.0	9.9	9.3	10.0	9.1
MP, g	2666	2616	2568	2480	2492	2460
MP from bacteria, %	49.3	53.1	52.0	56.9	54.0	56.3
Amino acids						
Lys, g	168	195	164	186	159	181
Lys, % MP	6.3	7.4	6.4	7.5	6.4	7.4
Met, g	51	66	50	63	49	62
Met, % MP	1.9	2.5	2.0	2.5	2.0	2.5
Lys/Met	3.30:1	2.93:1	3.26:1	2.95:1	3.26:1	2.95:1
Carbohydrates						
Starch	29.8	28.8	30.3	30.6	27.9	31.5
pH, predicted in rumen	6.23	6.32	6.29	6.36	6.16	6.43
Allowed milk yield						
by ME, kg	37.5	37.6	36.0	36.7	37.2	35.5
by MP, kg	39.8	39	37.3	36.1	36.3	35.2
Bacterial yield						
Dry matter, g	3508	3701	3558	3763	3586	3690
MP, g	1316	1388	1334	1411	1345	1384
Bacterial efficiency						
g bacteria DM/kg fermented CHO	370.9	388.1	378.7	385.3	357.9	385.7
g bacteria N/kg fermented CHO	37.1	38.8	37.9	38.5	35.8	38.6
g bacteria N/kg DOM	29.6	31.3	30.4	31.6	28.6	31.7
Fermented CHO, kg	9.46	9.54	9.39	9.77	10.02	9.57


TECHNICAL ASSISTANCE AND ANALYSIS

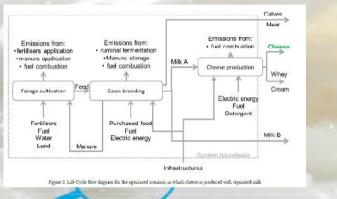
- · Inspections in each farm
- Samplings
- · Chemical analysis
- Animal welfare
- Optimization report
- Analysis report
- Wellness report

Lova	Campioni		T 707		1
ecolea _{di prova}	Lampiton	1	2	3	4
Deliwie constiche Detoficorometria ME 02/063 rev. 3 2013		25.902 0011010/85	50.000 cellate/at	9,000 cellule/mi 3	14.008 cellule/sl
Prova Feonica detode di prova	Campioni	5	6	7	8
Cellule somatiche Dptofluorometria HP 02/063 rcv. 5 zbiz		7.000 cellule/mi 5	5.515,000 callule/pt	35.000 cellule/*1.	108 000 pollule/ed
ecolica ecolica ecodo di prova	Campioni	9	10	11	12
Cellule sometiche Optofluorometria 4F 02/053 rev. 3 - 2013		M 20-000 cellulutus	5.000 cellule/Tu	18.000 cs.101*/z*.	72.000 cellule/mt
zove December Metodo di prova	Camptoni	13	14	15	16
Cellule somatiche /ptoficorometria dp 03/463 mev. 3 - 2013		134.000 cellple/mL	4.000 cellule/st	149.000 ccllule/si.	238.500 callula/ai

		CLASSIFIED MILE	STANDARD MILK	GRAFFIO CHEESE
P	-ete	1936	1006	CHEMICAL ANALYSIS
5	make	1253	1145	
cı		9861	4819	
CI	76	0,986	0,482	
K		1097	837	
I.	36	0,110	0,084	
Ca	ang by	9213	7242	
	76	0,821	0,724	
Гe	ang ha	4,4	2,1	
Ni	make	0,8	0,6	
Cu	- mg ha	0,7	0,7	
Zα	mgkg	41,5	38,6	
Dı .	mehe	2,7	1,3	
Rb	maka	0,4	0,3	
Si.	Hete	2,4	2,0	

GRAFFID CLASSIFIED 9	m.x	GRAFFIO STANDARD S	m.x
MONOUNSATURATED fat	11,07	MONOUNSATURATED fat	7,67
PULTUNSATURATED fat	2,17	PULTUNSATURATED fat	1,54
SATURATED fat	21,00	SATURATED fat	17,53
A3HE3	3,11	ASHES	3,20
CARBS	1,85	CARBS	2,66
CHLORIDE	1,53	CHLORIDE	1,57
PROTEIN	23,11	PROTEIN	30,42
FAT	35,14	FAT	27,40
HUMIDITY	36,78	HUMIDITY	36,33
ENERGY Kest	416	ENERGY Krall	370
ENERGY M	1742	ENERGY kJ	1586

Media aritmetica mensile dei conteggi cellulari delle 5 aziende aderenti al progetto



LCA

- Description of the process
- Inspections in each farm
- Data collection
- Quantify the environmental performance
- LCIA methodology
- LCA flow diagram
- LCA inventory
- LCA report

Results

The results of the study referred to the functional unit are reported in table 1 and 2.

	-	Total	Milk	Milk transport	Cheese making
Climate change	kg CO2 eq	6,13	5,88	0,01	0,25
Photochemical ozone formation	kg NMVOC eq	7,8E-03	7,4E-03	8,7E-05	3,8E-04
Acidification	molc H+ eq	0,08	0,08	0,00	0,00
Terrestrial eutrophication	molc N eq	0,34	0,34	0,00	0,00
Freshwater eutrophication	kg P eq	1,1E-03	1,1E-03	1,2E-07	3,2E-07
Marine Eutrophication	kg N eq	0,04	0,04	0,00	0,00
Land use	kg C deficit	50,29	50,29	0,00	0,00

Table 1: Results of the LCA referred to 1 kg SC produced with no-separated milk

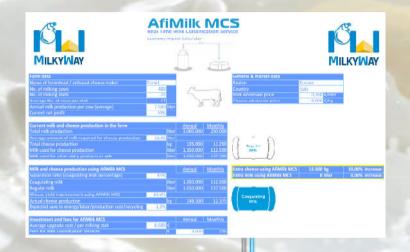
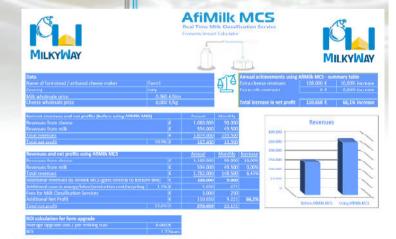

<u> </u>		Total	Milk	Milk transport	Cheese making
Climate change	kg CO2 eq	5,59	5,40	0,01	0,18
Photochemical ozone formation	kg NMVOC eq	7,1E-03	6,8E-03	6,5E-05	2,9E-04
Acidification	mole H+ eq	0,07	0,07	0,00	0,00
Terrestrial eutrophication	molc N eq	0,31	0,31	0,00	0,00
Freshwater eutrophication	kg P eq	1,0E-03	1,0E-03	9,0E-08	2,4E-07
Marine Eutrophication	kg N eq	0,04	0,04	0,00	0,00
Land use	kg C deficit	46,16	46,16	0,00	0,00

Table 2: Results of the LCA referred to 1 kg SC produced with separated milk (WithMCS)


BUSINESS PLAN AND EXPLOITATION

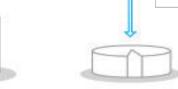
- Marketing and business plan
- Questionnaire
- Business strategy
- Business model for dairy farmers
- Promotional mail
- New service network

DISSEMINATION ACTIVITIES

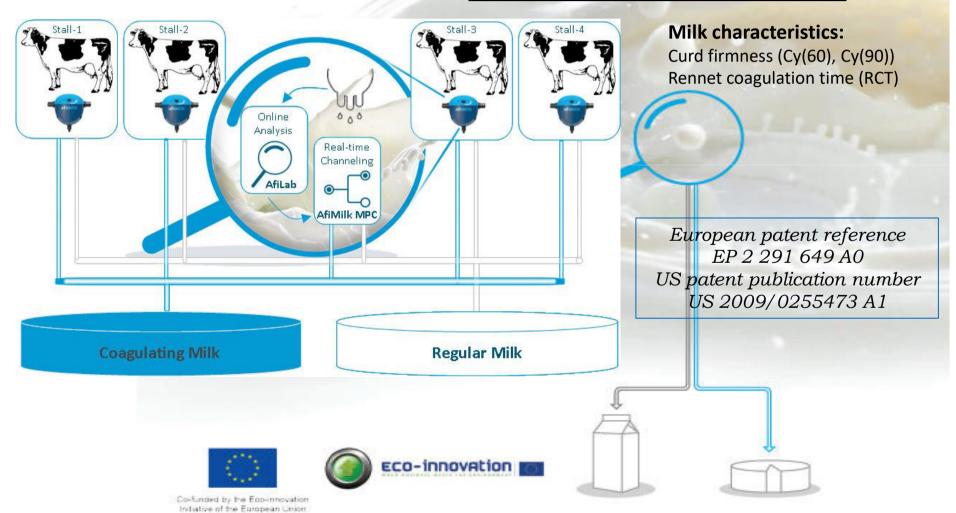
- Project website
- Flyer and brochure
- Four articles
- MilkyWay events

OBJECTIVES

AND RESULTS



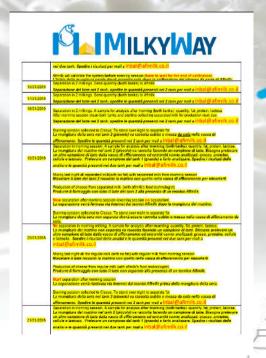
MILKYWAY: SPECIFIC OBJECTIVES


- Improving dairy production and yields through milk classification, directly in Farm without any manipulation
 - analyzing coagulation properties on real time (MCS)
 - separation between:
 - · milk suitable for cheese making
 - milk suitable for fermentation and other fluid milk products
- Milk supply chain optimization providing higher value to milk processors and premium prices to farmers
- Optimisation of the dairy cattle ration (focused on the optimisation of the protein intake) for waste reduction



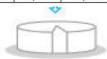
Improving dairy production and yields: MCS TECHNOLOGY

Improving dairy production and yields: MCS TECHNOLOGY


Initiative of the European Union

Improving dairy production and yields: CHEESEMAKING TEST PROTOCOL

- Tests on milk from same farm
- Tests on G milk and standard milk
- Same process of cheese making

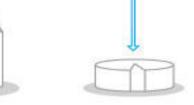


Improving dairy production and yields: RESULTS OF CHEESEMAKING TEST

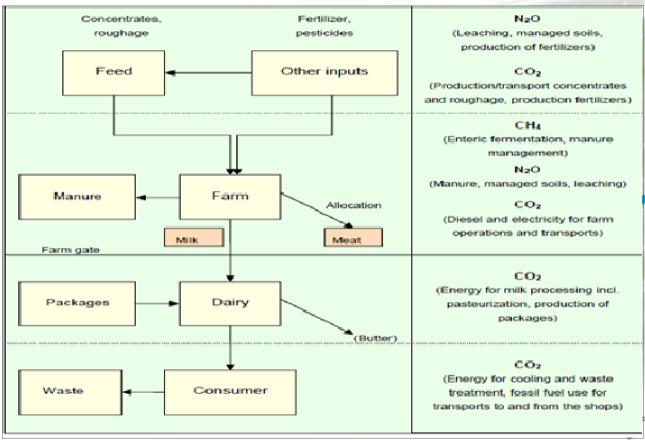
Cheese date	Milk type	Skim milk L evening session	Whole milk, L morning session	V(milk) L production pool	Cream L	m(milk) kg production pool	n(cheese)	m(cheese) kg Before brine	m(cheese), kg after brine	yield before brine	yield after brine	Yield difference	Yield difference after brine
19/01/2016	G	234	132	366	36	377	9	43,5	43	11,54%	11,41%	3	
20/01/2016	R	353	604	957	49	986	24	101	100	10,25%	10,14%	12,62%	12,43%
21/01/2016	G	224	232	456	42	470	12	54	53,8	11,50%	11,45%		
22/01/2016	R	401	601	1002	49	1032	22	106	105	10,27%	10,17%	11,94%	12,59%

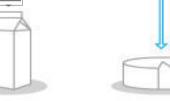
Improving dairy production and yields:

GRAFFIO CHEESE

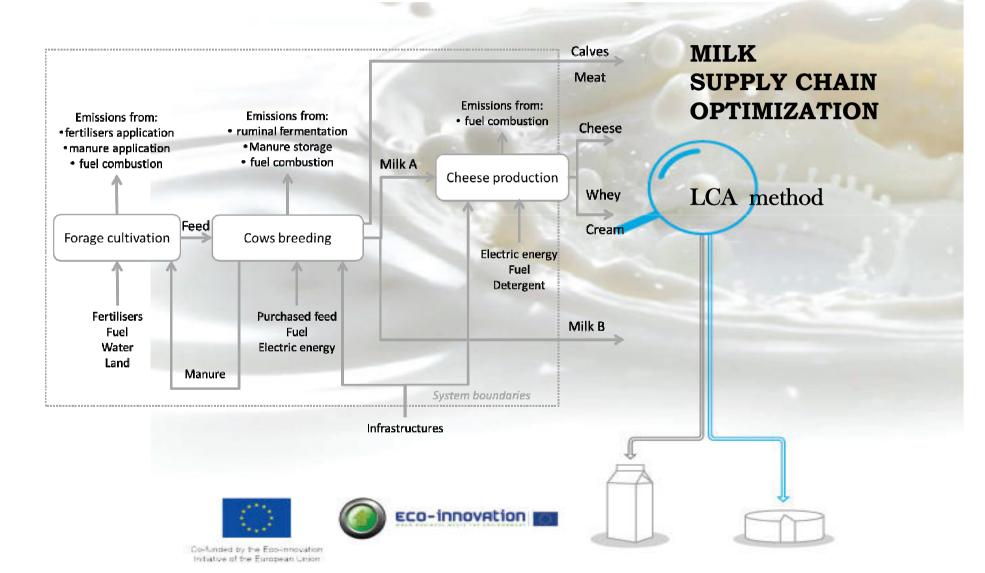

Controls on Graffio

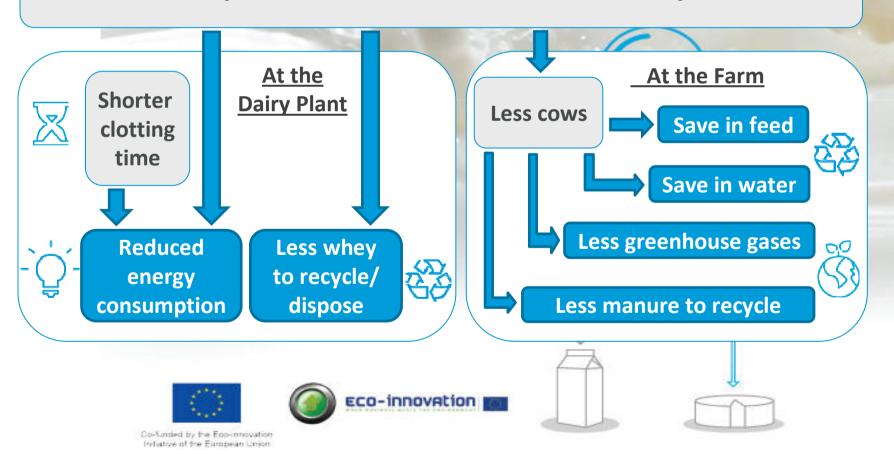
- Chemical analysis
- Sensory tests





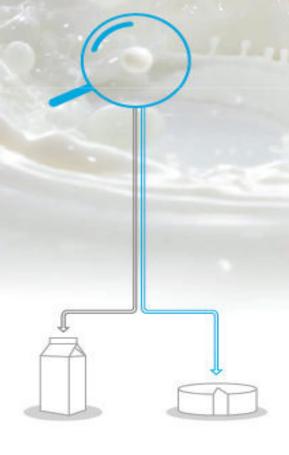
MILK SUPPLY CHAIN OPTIMIZATION


Main pollution factors for each actor in the chain



QUANTIFIED ENVIRONMENTAL IMPACTS

Less milk required for same amount of cheese production


QUANTIFIED ENVIRONMENTAL IMPACTS

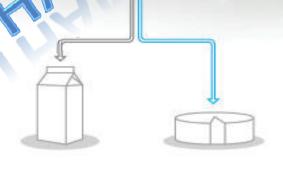
Optimization of the dairy cattle ration:

- Reduces the quantity of urea in the urine Reduction of the impact on acidification (NH₃)
- Potentially decreases the volume of sewage Reduction of the impact on eutrophication (NO₃)
- Reduces the amount of soybean used.
 Reduction of the impact on global warming (CO₂)

MONITORING OF PROJECT PROGRESS

Performance indicators

	CIP Ec	o-innovation first applie	cation and Mar	eness and innovat ket Replication F Innovation 2013	
INDICATOR	S				MilkyWay
At the	end of the	project			
Objective	Indicators		Absolute Impact	Relative Impact	Comment
		CO2	-0,274 kgCO2/kgSC	-9,7%	SC= standard cheese (2.3 g carbohydrates/100 g, 26,8 g proteins/100g and 31,3 g fats/100g). From 2,8 kgC02/kgSC to 2,5 kgC02/kgSC. Ti relative impact has been calculated per kilogram of "standard cheese"
Improved Environmental	Greenhouse gas emissions	Methane	-9,1 gCH4/kgSC	-8,4%	From 107,9 kgCH4/kgSC to 98,0 kgCH4/kgSC The relative impact has been calculated per kilogram of "standard cheese"
	0.000000000	N20	-0,24 gN2O/kgSC	7,7%	From 3,09 gN2O/kgSC to 2,85 kgN2O/kgSC The relative impact has been calculated per kilogram of "standard cheese"
		GHG alitogether	-0,54 kgCO2eq/kgSC	-9,33%	From 6,13 kgCO2eq/kgSC to 5,59 kgCO2eq/kgSC. The relative impact has bee calculated per kilogram of "standard cheese
	Air quality Reduction / substitution of dangerous substances	Particulate matters	in ppm	n/a	0
		NH3	1,9 gNH3/kg SC	-8,1%	From 23,3 gNH3/kgSC to 21,4 gNH3/kgSC. 1 relative impact has been calculated per kilogram of "standard cheese"
Performance		Irritant / Corrosive			
		Mutagenic / Cardnogenic		n/a n/a	
		Toxic Persistent / Bioaccumulative		n/a n/a	
		Prevention	tons / year	in % change to baseline	
		Waste minimization	liters / year	0%	No waste minimisation was registered
		Reuse of waste / Substance recovery	tons / year	in % change to baseline	
		Material recycling	tons / year	in % change to	
	Waste management	Waste diverted from landfills	tons / year	in % change to baseline	
		Hazardous waste	tons / year	in % change to	
		Manure reduction	tons/year	baseline 12,7%	Yield increased from 10,14% to 11,43%. The manure reduction is associated with the lower quantity of milk needed to produce 1 kg of cheese.
	Reduced resource	Soil occupation	0,5 m2*y/kgSC	-12,7%	From 5,3 m2*y/kgSC to 4,8 m2*y/kg SC. The relative impact has been calculated per kilogram of "standard cheese"
	consumption (excluding energy)	Milk	1,1 kg milk/kg cheese	-12,7%	Chiese yield from 10,14% to 11,43%. Thank to an improvement of the cheese yield
Better use of natural resources	Water	Reduced water consumption	4,3 lt/kg cheese	-11,2%	Yield increased from 10,14% to 11,43% The water reduction is associated with the lower quantity of milk needed to produce 1 kg of cheese



"MESSAGE" TO BE DELIVERED IS

Milk quality and dairy production and yields can be enhanced with a new eco-innovative and environmental-friendly system and without manipulation, modification, heating or adding new ingredients, the introduction of which is good for business, and will help obtaining several positive benefits on environment.

